Today’s centralized cloud computing architectures mean unprecedented speed, scale, and elasticity are at our fingertips. In most conceivable instances, the technological setup is adaptable, agile and entirely fit for purpose. It is not, however, optimal for cost-effective, 5G-enabled Internet of Things (IoT) use cases that require ultra-low latency and extreme throughput.
This is where edge computing comes in.
Rather than transmitting data to the cloud or a central data warehouse to be analysed, processing can take place at the ‘edge’ of a network, reducing network latency, increasing bandwidth and delivering significantly faster response times. This is a big deal for service providers, who are now in a unique position to shake up entire industries (including their own) and offer new, pioneering, and profitable services via distributed architectures.
Instead of being centrally anchored, this type of architecture features components presented on different platforms. These components then cooperate over a communication network in order to achieve a specific objective or goal. For example, it could entail distributing selected network functions, such as cloud radio access network (C-RAN) for 5G, or hosting IoT-related applications.
Thanks to its distributed nature, edge computing can empower service providers to offer new solutions and services that simultaneously increase revenue streams and reduce network transport costs.
Consider applications that require ultra-low latency (self-driving cars) or high bandwidth (video surveillance). By leveraging edge computing, service providers can choose to bring these services to market via infrastructure-as-a-service (IaaS) or platform-as-a-service (PaaS) options—all depending on how deep they want to be in the value chain. Services of this nature cannot be offered via traditional public cloud.
Although we’re still in the early stages of edge computing’s evolution, we can confidently expect a host of influential IoT use cases to break into the mainstream in the coming years. For example, the development of Augmented Reality (AR), Virtual Reality (VR), and mobile gaming applications are already enthusiastically incorporating edge computing capabilities, increasingly reaping the benefits of rapid responsiveness in the face of high-bandwidth usage.
Virtualized content delivery network (vCDN) solutions are also highly monetizable. Content providers get to offload from their central servers, and service providers can save on backhaul and transport costs. The customer gets a rapid and seamless user experience. Everyone wins.
Another eye-catching scenario involves service providers deploying small edge compute sites on enterprise campuses to deliver private 5G connectivity and services, thus deftly swerving the need for traditional Local Area Networks (LAN) and Wi-Fi.
Making It All Work
So how can service providers take more proactive ownership of these nascent use cases—which are just the tip of iceberg—and alchemize them into safe, viable and profitable realities?
Without question, they will need both intelligent networking and traffic management functions at the edge compute site, as well as Application Delivery Controller (ADC) and security services in front of the applications hosted there.
It is worth noting that ADC and security services were traditionally delivered on purpose-built infrastructure, leveraging hardware-based acceleration in order to deliver high scale and capacity. While most edge architectures will be built based on common off-the-shelf (COTS) servers, the need for high performance remains. Recent innovations like Intel’s Quick Assist Technology address this demand, ensuring service providers benefit from acceleration capabilities such as encryption and compression via COTS platforms.
Edge computing also calls for a distributed approach to robust application layer security such as a web application firewall (WAF). One of the biggest mistakes is to assume traditional security controls such as firewalls are enough. Fortunately, today’s Advanced WAF solutions are now capable of dynamically protecting applications with anti-bot capabilities and stopping credential theft using keystroke encryptions. It is also possible to extend app-layer DDoS detection and remediation for all applications via a combination of machine learning and behavioral analysis.Other technological must-haves include the ability to deliver cloud-native application services for microservices-based applications, as well as API gateway functions to securely interconnect with third parties accessing the edge compute platform.
While edge computing’s reach and influence may still be (relatively) embryonic, there has been a growing momentum across EMEA in the past couple of years, particularly in the automotive and manufacturing sectors. Soon, every organization dealing with multiple interconnected devices and rapid data processing demands will need an edge computing strategy, not to mention the technology to make it all work.
____
For more about F5's Service Provider solutions, visit: https://www.f5.com/solutions/service-providers
About the Author

Related Blog Posts

The everywhere attack surface: EDR in the network is no longer optional
All endpoints can become an attacker’s entry point. That’s why your network needs true endpoint detection and response (EDR), delivered by F5 and CrowdStrike.
F5 NGINX Gateway Fabric is a certified solution for Red Hat OpenShift
F5 collaborates with Red Hat to deliver a solution that combines the high-performance app delivery of F5 NGINX with Red Hat OpenShift’s enterprise Kubernetes capabilities.

F5 accelerates and secures AI inference at scale with NVIDIA Cloud Partner reference architecture
F5’s inclusion within the NVIDIA Cloud Partner (NCP) reference architecture enables secure, high-performance AI infrastructure that scales efficiently to support advanced AI workloads.
F5 Silverline Mitigates Record-Breaking DDoS Attacks
Malicious attacks are increasing in scale and complexity, threatening to overwhelm and breach the internal resources of businesses globally. Often, these attacks combine high-volume traffic with stealthy, low-and-slow, application-targeted attack techniques, powered by either automated botnets or human-driven tools.
Volterra and the Power of the Distributed Cloud (Video)
How can organizations fully harness the power of multi-cloud and edge computing? VPs Mark Weiner and James Feger join the DevCentral team for a video discussion on how F5 and Volterra can help.
Phishing Attacks Soar 220% During COVID-19 Peak as Cybercriminal Opportunism Intensifies
David Warburton, author of the F5 Labs 2020 Phishing and Fraud Report, describes how fraudsters are adapting to the pandemic and maps out the trends ahead in this video, with summary comments.
